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Let Z be the set of integers. We denote by m,n etc. the elements of Z.

Let U be the open unit die ,-d T the boundary of U in the complex plane t.

Let Z 22 ,U2 and T2 be the respective calesian product and 02 the normalized
T2  p w e

Lebesgue measure on . For p >(T, we denote by the usual Lebesgue

space of the equivalence class of p-integrable functions and
U2U2  { b rd

HP(u 2 )  ( f : f : U 2 analytic and sub0_<r:5fT fr(t) o}2 .

Here f r) =f(z) with z=rt. Let z= (zlz 2) = (r1eie,r2ei62) and t= (eiel'i62),

then P(z,t) P r (e 1 P r2 ( 2 ) is called Poisson Kernel with

2

P (6 ) 1 I - r Hp 2 )  i r i r t
r ) +r 2 It is known that for fEH(U ), _r f (t)=f*(t)

r 1 -2 +2sr +rr

exists and is in 2PT,2). FT ,2), let fe(z) f 2P(z,t)f(t)do2,fe 2 2 22

then f H (U2 ). In case p= 2, f E H (U2) if f L (T ,02) and
mn fe mn 2 2

mn 1 2 m=O an0mn zZ2. Conversely every fE H (U)

has this form and f*(t) =Z 7m0 0n=oa mn t2
. For further information, see [4].

In [4], Rudin gives an example of a shift-invariant subspace of H 2(T )

2
which is not of the form q'H , where q is an inner function. Our purpose here

is to characterize invariant subspaces of the form qH2 in terms of the action

of the shifts on it. We note that subspaces of the form qH2 can be represented

as

Cl) q 2  1 * VVn(M)
m0 n 0

where M equals the span of q in H 2(T ) and V is the multiplication by ti on_T 2 .r.

p.2 2(~itt 2H2(T 2 ) with t - (t,t 2 )ET It is easy to check that

M= {qH 2 VI(qH2)} n{qH2 V2(qH2)}. As V1 commutes with V2 (in short, VI-V2),

we get from (I) and Theorem 4.1 of [2] (see also [5]) that VI and V2 are doubly

° commuting (i.e. VI-V 2, VI-V*). In fact, we have
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2. Theorem. An invariant subspace M {OW of H (T 2) is of the form q.H2 with

q inner function if and only if VI and V2 are doubly commuting on M.

Proof: Necessity was proved above. To prove the sufficiency we get, in

view of Theorem 4.2 ((c)=*(b)) (2],

(3) M I I. V nV R2),
m-0 n=0

where Ri MOViM, using Theorem 1.2 of [2]. Here we observe thatnO~lR2 In . V a n  2  2 1 1 he

nV(R), nV'(R') and (H (T2) ) equal zero. Let qltq e Rn R ,n 2 1 m 12 m,n 1 2" equal

f 2tIt2qIq2do2 = 0 for m,n>0. As V2 (R ) (RI) (Lemma 1.3 and Theorem 4.2
T

ofn q1)m w g 0 for all n >0 and m >0. Since t =t-m, byof [2]), we get f 2t2 tl2do2=

the symmetry of the problem we get for (m,n) # (0,0)

ftltnqlq2 do2 = 0.

Since qIq2 LI(T2,2 ) we get qlq2=c I  a.e. 2. In particular, q 112=c 2 .

Hence RI n R is one dimensional. Also q generating RI n R is an inner-
1 2 1 2

function. Assume jq[ I a.e. choosing q of norm I. Now (3) gives the result.

Let fE H 2(T 2) and M = P{VmVnf : rn-0} then M is an invariant subspace.
f 1 2 f

4. Corollary. Mf qH (T ) if and only if V1 and V2 are doubly commuting

on Mf.

Following Helson [1], we say that a function g is H-outer if M= H 2(T 2).
g

5. Corollary. A function f E H 2(T 2) has the property f= q-g with q inner

and g H-outer if and only if V and V2 doubly commute on Mf.

Proof: By Corollary 4, only if part follows as Mf qH 2(T 2). To prove the

converse we note that by Corollary , MfqH (T ) giving f- q~g, gEH (T 2).

Hence Mf= q.M giving g is H-outer.

In ([4], p. 72) a function fEH (U 2 is called outer (we call it R-outer)

J42(U 2
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if logIf(z)I = f logIf*Ida 2 . Given a function fE H 2(T 2), we denote by

fe 22 T e
f H (U ) given by f T2P(z,t)f(t)da 2 . In this case we note that (f )*=f.

It is already known ([4], Theorem 4.4.6) that f is H-outer then fe is R-outer.

From this we get in view of Corollary 4 the following.
0

J. e
6. Corollary. Let g be H-outer then g is R-outer and V and V doubly com-

1 2

S mute on M
g

We now prove the converse of Corollary 6. Assume now that V1 ,V2 doubly

commute on Mf and fe is R-outer then by Corollaries 5 and 6, the definition of
fe e e e

,g and the fact that IqI I we get =pg with I =1. Thus we get that

the slice function fe() pw (,)ge(A). Using Lemma 4.4.4(a) of [4] and the
w w 14

uniqueness of outer function ([1], p. 13) we get p(X)=1 for all w and X

giving p -1 i.e., f = g. Combining this with Corollary 6 gives

7. Corollary. Let fEEH 2(T 2) then Mf =H 2(T 2) if and only if fe is R-outer

and V and V2 doubly commute.

In view of Theorem 4.2 of [2], we get that Corollary 7 includes Beurling

Theorem proved in ([6], Theorem 1.5). Now using essentially classil tech-

niques ([3],[2]) one can derive associated results in prediction theory in [6].

4
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